
C202: How To Build Your Own
Cloud Encoder With FFmpeg

Jan Ozer, Principal - Doceo Publishing

Phil Moss, Senior Developer - RealEyes

About Your Speakers

● Jan Ozer,
○ Contributing Editor, Streaming Media Magazine
○ Author, Learn to Produce FFmpeg in 30 Minutes or

Less, Doceo Press, 2017
○ www.streaminglearningcenter.com

● Phil Moss
○ Senior Developer, RealEyes
○ Consultancy, developer for exceptional video

experiences to desktop, mobile, and OTT set-top
devices

○ Clients include NBCS, Oracle, Adobe, MLBAM,
Lionsgate

○ www.realeyes.com

INTRO
The WIIFM

WHO IS THIS PRESENTATION FOR?

● You have lots of video to transcode

● You distribute via one or more adaptive bitrate technologies

● You’re familiar with concepts like codecs and packaging

● You’re familiar with creating command line executions and
JavaScript doesn’t offend you

● You understand some very basics of servers and how to
work with them

Intro to FFmpeg
Jan Ozer
@janozer

Book from Which Some Materials Derived
● Includes H.264/H.265
● Creation of variant playlists with

FFmpeg
● Variant/master playlists with Apple

tools
● Show special:

○ - Buy book
○ - Email receipt to

janozer@gmail.com
○ - get free copy of PDF ($24.95

value
○ - Valid till 11/30

Introduction
● There are always multiple ways; seldom is there a single

correct “one”
● We’re showing minimum necessary commands; there are lots

more configuration options
● Location of configuration option in string typically doesn’t matter
● If you don’t choose a configuration option, FFmpeg uses the

default
● Configurations in command line override defaults

Script 1: Choosing Codec
ffmpeg -i TOS_1080p.MOV -c:v libx264 TOS_s1.mp4

Program input file video codec Output file

● Input file: 1080p file in MOV format
○ YUV video
○ PCM audio

● Simple script means that you accept all FFmpeg defaults
● Generally acceptable for home movies; not acceptable for streaming,

particularly adaptive streaming

Encoding Output - Default
● Codec: x264

○ Data rate: 15 Mbps
○ Bitrate control: average

bitrate
○ Key frame: 250
○ Scene change: Yes
○ Resolution: same (1080p)
○ Frame rate: same (24)
○ Profile: High
○ CABAC: Yes
○ x264 preset: Medium
○ B-frames: preset (3)
○ B-adapt: preset (1)
○ Reference frames preset (3)

● Audio codec: AAC
○ Audio channels: 2
○ Audio samples: 48 khz
○ Audio bitrate: 2277 b/s

● Other Topics
○ Encoding multiple files
○ Converting to HLS

Bitrate Control

30 seconds talking head/30 seconds ballet

Setting Data Rate-Video
-b:v 5000k

bitrate video

● Sets video bitrate to 5
mbps

● No real bitrate control
● Spikes may make file

hard to play

Images from Bitrate Viewer

Setting Data Rate-Two-Pass
ffmpeg -y -i Test_1080p.MOV -c:v libx264 -b:v 5000k -pass 1 -f mp4 NUL && \

ffmpeg -i Test_1080p.MOV -c:v libx264 -b:v 5000k -pass 2 Test_1080p_2P.mp4

Line 1:

● -y - overwrite existing log file
● - pass 1 - first pass, no output

file
● -f mp4 - output format second

pass
● NUL - creates log file cataloguing

encoding complexity (can name log
file if desired)

● && \ - run second pass if first
successful

Line 2:

● -pass 2 - find and use log file
for encode

● Test_1080p_2P.mp4 -
output file name

● Note - all commands in first
pass must be in second file;
can add additional commands
in second line (more later)

Setting Data Rate-Two-Pass

● Single-Pass Encode
○ Poor data rate

control (5062 kbps)

● Two-Pass Encode
○ Improved bitrate

control (5007 kbps)
○ Higher peak!

Setting Data Rate-CBR
ffmpeg -y -i test_1080p.MOV -c:v libx264 -b:v 5000k -pass 1 -f mp4 NUL && \
(same)

ffmpeg -i test_1080p.MOV -c:v libx264 -b:v 5000k -maxrate 5000k -bufsize 5000k
-pass 2 test_1080p_CBR.mp4

Line 2:

● - maxrate 5000k - maximum rate same as
target

● - bufsize 5000k - VBV (Video Buffering
Verifying) buffer set to one second of video (limits
stream variability)

Setting Data Rate-Two-Pass

● Two-pass ABR
○ Poor data rate control
○ Better overall quality

● CBR - not flat line
○ Peak is 5295
○ Much less variability
○ Lower overall quality (not

much)
○ Can show transient quality

issues

CBR Can Show Transient Quality Issues

○ http://bit.ly/vbr_not_cbr

Setting Data Rate-Constrained VBR

ffmpeg -y -i Test_1080p.MOV -c:v libx264 -b:v 5000k -pass 1 -f mp4 NUL && \
(same)

ffmpeg -i Test_1080p.MOV -c:v libx264 -b:v 5000k -maxrate 10000k -bufsize 10000k
-pass 2 Test_1080p_200p_CVBR.mp4

ffmpeg -i Test_1080p.MOV -c:v libx264 -b:v 5000k -maxrate 5500k -bufsize 5000k
-pass 2 Test_1080p_110p_CVBR.mp4

Line 2: 200% Constrained VBR

● - maxrate 10000k - 200% of target
● - bufsize 10000k - VBV buffer set to two seconds of video (more variability)

Line 2: 110% Constrained VBR

● - maxrate 5500k - 110% of target
● - bufsize 10000k - VBV buffer set to one second of video (less variability)

Setting Data Rate-Constrained VBR

● 200% Constrained VBR - more
stream variability
○ Slightly higher quality
○ Avoids transient problems

● Too much variability

● Peak is 5295
● Much less variability
● Lower overall quality (not

much)
● Can show transient quality

issues

Setting Data Rate-Constrained VBR

● 110 Constrained VBR
○ Slightly higher quality than CBR
○ Slightly higher peak
○ Avoids transient frame issues
○ More easily deliverable than

200% constrained
○

● Peak is 5295
● Much less variability
● Lower overall quality (not

much)
● Can show transient quality

issues

Bottom Line
● Technique is pretty simple
● My tests

○ CBR delivers best QoE (http://bit.ly/BRC_QOE)
○ CBR can introduce transient quality issues

(http://bit.ly/vbr_not_cbr)
○ Bottom line: recommend 110% Constrained VBR

■ Very deliverable
■ Avoids transient quality issues

Keyframe/Scene Change - Single File
 -g 250 -keyint_min 25 -sc_threshold 40

GOP Size

● Default is:
○ Interval of 250
○ Scene change enabled
○ Minimum interval between 25
○ Sensitivity of 40

● Don’t have to do add anything; FFmpeg will deliver these
defaults with or without entries

Minimum Space
B/T Keys

Sensitivity to
Scene Change

Key Frame/Scene Change - Single File
 -g 250 -keyint_min 25 -sc_threshold 40

GOP Size Minimum Space
B/T Keys

Sensitivity to Scene
Change

Irregular KeyframesImages from Telestream Switch

Key Frame/Scene Change - ABR - Alt 1
-g 72 -keyint_min 72 -sc_threshold 0

GOP Size

● ABR
○ Need smaller GOP so can

switch to different streams
much faster

○ Need consistent keyframe
interval
■ Have to be at the start

of all segments

Minimum Space
B/T Keys

Sensitivity to Scene
Change

● GOP 72 (3 seconds)
○ 72 is about the longest; many

use 2-seconds
○ Adjust for frame rate

● Minimum 72 e.g. no scene changes
● -sc_threshold 0 - no scene changes
● Need in Pass 1 and Pass 2

Key Frame/Scene Change - ABR - Alt 1
 -g 72 -keyint_min 72 -sc_threshold 0

GOP Size Minimum Space
B/T Keys

Sensitivity to
Scene Change

Regular Keyframes but none at scene changes

Key Frame/Scene Change - ABR - Alt 2
-force_key_frames expr:gte(t,n_forced*3) -keyint_min 25 -sc_threshold 40

Force Keyframe
every 3 seconds

● Should deliver
○ Keyframe every 72

frames

Default Minimum Default Sensitivity

● Second two are defaults
○ Don’t really need to

be there

Key Frame/Scene Change - ABR - Alt 2
-force_key_frames expr:gte(t,n_forced*3) -keyint_min 25 -sc_threshold 40

Force Keyframe
every 3 seconds

Default Minimum Default Sensitivity

72 frames 72 frames 72 frames

Regular Keyframes, and keyframes at scene changes

Which Alternative is Better?
Static (no scene change)

PSNR - 41.22207

Scene Change Detection

PSNR - 41.25565

.08% better

Resolution
-s 1280x720

Resolution Video
Filtergraph

-vf scale=1280:trunc(ow/a/2)*2

Set width Compute height
Same aspect ratio

Multiple of 2

Simple

● Default is same as original; if not
changing resolution can leave out

● Set size directly
● Simple and easy
● Will distort if aspect ratio changes

More Complex

● More flexible approach
● Preserves aspect ratio
● Makes sure height is multiple

of 2 (mod 2)
○ If odd value can cause

encoding problems

Frame Rate
-r 12

● Don’t need to include
○ Default is use source frame rate
○ Typically used to cut frame rate on lower quality streams

■ 480x270@12 fps

Profile/Level
-profile:v Baseline, Main or

High
-profile:v Baseline

● Default is High; need to use
baseline for files created for
Android and older iOS devices

-level:v number
-level:v 4.2

● Use when encoding for
constrained devices (mobile)

● Simply inserts level in file
metadata; does not restrict
encode to level parameters

x264 Preset/Tuning
-preset preset name (slow)

- preset slow

● x264 has collections of encoding
parameters called presets
○ Ultrafast to placebo
○ Trade encoding speed

against quality (see next
page)

● Default is medium - if no entry,
medium parameters are applied

-tune tune name (animation)
- tune animation

● Tune encoding parameters for
different footage types
○ Animation, film, still

images, PSNR, SSIM, grain
● My experience - animation

works pretty well, the rest not
so much

● Default is no tuning

x264 Preset
● Yellow - default
● Green - ones that you

may adjust with

* - are differing values from medium.

excerpted from http://dev.beandog.org/x264_preset_reference.html

x264 Preset

● Medium is default; works well in most cases
● If capacity becomes an issue, consider switching to

Faster
○ Slightly lower quality
○ 58% of encoding time

Audio
-c:a aac -b:a 64k -ac 1 - ar 44100

Audio codec

● HE, HE2 are different
codecs

● Channels
○ 1 = mono
○ 2 - stereo

Bitrate Sample RateChannels

● Default:
○ AAC for MP4
○ Channels: source
○ Sample rate: source
○ Data rate:

inconsistent

Multipass Encoding ABR Streams

● Can run first pass once, and
apply to multiple encodes;

● Can reuse for different rez
and bitrates

● Can’t reuse if change:
○ frame rate
○ Keyframe interval
○ Profile

● Which config options must be in first
pass?
○ Frame settings (B-frame/Key frame)
○ Target data rate
○ Some say audio settings

■ My tests haven’t shown this is
true

HLS Packaging
 -f hls -hls_time 6 -hls_list_size 0 -hls_flags single_file

Format: HLS

● HLS_Flags
○ When single_file, one TS

file with byte-range
requests

○ When left out, individual .ts
segments

● Creates individual .m3u8 files;
you have to create master

Segment
Length

One file
(byte-range)

Max segments in
playlist.

● Format: Must be in first and second
pass

● Segment length
○ Keyframe interval must divide

evenly into segment size
○ Shorter improves responsiveness

● -HLS_list_size
○ Typically set to 0 which means all

HLS Command Line for Three Files
Pass 1: ffmpeg -y -i Test_1080p.mov -c:v libx264 -s 1280x720 -preset medium -g 48
-keyint_min 48 -sc_threshold 0 -bf 3 -b_strategy 2 -b:v 3000k -c:a aac -b:a 128k -ac 2
-ar 48000 -pass 1 -f HLS -hls_time 6 -hls_list_size 0 -hls_flags single_file NUL && \

Pass 2: ffmpeg -i Test_1080p.mov -c:v libx264 -preset medium -g 48 -keyint_min 48
-sc_threshold 0 -bf 3 -b_strategy 2 -b:v 7800k -maxrate 8600k -bufsize 7800k -c:a aac
-b:a 128k -ac 2 -ar 48000 -pass 2 -f hls -hls_time 6 -hls_list_size 0 -hls_flags single_file
Test_1080p.m3u8

Pass 2: ffmpeg -i Test_1080p.mov -c:v libx264 -s 1280x720 -preset medium -g 48
-keyint_min 48 -sc_threshold 0 -bf 3 -b_strategy 2 -b:v 6000k -maxrate 6500k -bufsize
6000k -c:a aac -b:a 128k -ac 2 -ar 48000 -pass 2 -f hls -hls_time 6 -hls_list_size 0
-hls_flags single_file Test_720p_H.m3u8

Pass 2: ffmpeg -i Test_1080p.mov -c:v libx264 -s 1280x720 -preset medium -g 48
-keyint_min 48 -sc_threshold 0 -bf 3 -b_strategy 2 -b:v 4500k -maxrate 5000k -bufsize
4500k -c:a aac -b:a 128k -ac 2 -ar 48000 -pass 2 -f hls -hls_time 6 -hls_list_size 0
-hls_flags single_file Test_720p_M.m3u8

HEVC Encoding
ffmpeg -y -i TOS_1080p.mov -c:v libx265 -preset slow -x265-params
profile=main:keyint=48:min-keyint=48:scenecut=0:ref=5:bframes=3:b-adapt=2:bitrate=4000
:vbv-maxrate=4400:vbv-bufsize=4000:pass=1 -an -f mp4 NUL && \

ffmpeg -i TOS_1080p.mov -c:v libx265 -preset slow -x265-params
profile=main:keyint=48:min-keyint=48:scenecut=0:ref=5:bframes=3:b-adapt=2:bitrate=4000
:vbv-maxrate=4400:vbv-bufsize=4000:pass=2 -an TOS_1080p_h.mp4

ffmpeg -i TOS_1080p.mov -c:v libx265 -s 1280x720 -preset slow -x265-params
profile=main:keyint=48:min-keyint=48:scenecut=0:ref=5:bframes=3:b-adapt=2:bitrate=1000
:vbv-maxrate=1100:vbv-bufsize=1000:pass=2 -an TOS_720p_l.mp4

• Integrate x265 commands into FFmpeg
-x265-params – start of x265 commands, in
x265 syntax
• http://x265.readthedocs.io/en/default/
• One string of commands, separated by
colon, no spaces until finished

• Preset, an (audio no), format, and
Null outside of this structure
• Scaling commands outside of
–x265-params structure

Download free chapter - http://bit.ly/jo_freechap

Intro to Bento4
MP4 SWISS ARMY KNIFE: HLS & DASH

What can I do with Bento4?

● HLS generation, including master manifests, stream level manifests, mpeg-2
ts files, and fMP4 (fragmented MP4)

● MP4 to fMP4 conversion
● DASH generation
● Parsing and multiplexing of H.264 and AAC streams
● Support for DRM (Marlin, PlayReady, Widevine and FairPlay).
● Support for H.264, H.265, AAC, AC3, eAC3, DTS, ALAC, and other codec

types.
● Dual generation of HLS and DASH from fragmented MP4
● Atom/box editing, and stream/codec information
● A lot more… https://www.bento4.com/

https://www.bento4.com/

https://www.bento4.com/

Bento4 vs FFMPEG

● Bento4 focuses on MP4 based content: Packaging & Transmuxing

● FFMPEG is a broad spectrum tool for media conversion, encoding & packaging

HLS options

● Master playlists
● Single file output with byte range requests
● I-Frame only playlists
● AES encryption
● DRM
● Audio stream sidecar
● Subtitle sidecar
● fMP4

Create Multiple Bitrate Assets
mp4hls --hls-version 4 input_7000kb.mp4 input_5000kb.mp4 input_3500kb.mp4

Outputs:

Master.m3u8

Stream.m3u8 for each bitrate

Iframe.m3u8 for each bitrate

ts fragments for each bitrate

Multiple Audio Streams
mp4hls video.mp4 spanish_audio.m4a (different audio file)

mp4hls video.mp4 [+language=es]audio.m4a (multiplexed audio file, getting the
spanish stream)

Outputs:

Master.m3u8

Stream.m3u8 for video and audio

Iframe.m3u8 for video and audio

ts fragments

Audio.m3u8 and aac fragments

WebVTT Subtitles
mp4hls video.mp4 [+format=webvtt,+language=en]english.vtt

Outputs

Master.m3u8

Stream.m3u8

Webvtt manifest and .vtt file

Encryption and Single Segment
mp4hls --hls-version 4 --output-single-file --segment-duration 6
--encryption-mode AES-128 --encryption-key abaa09cd8c75abba54ac12dbcc65acd7
--encryption-url http://getmyKey?token=token video.mp4

Outputs

All HLS assets (master, stream with byterange requests, iframe, single ts file)

Assets are encrypted with AES-128, and encryption URL is added to the stream manifests

Segment duration will be set to 6 seconds, but will only segment at the closest i-frame

http://getmykey?token=token

Dual HLS and DASH From fMP4
mp4fragment input.mp4 output.mp4 (converts mp4 to fmp4)

mp4dash --force --hls --no-split --use-segment-timeline output.mp4 (without
--no-split it will output .m4s segments)

Outputs

Master.m3u8

Audio.m3u8

Video.m3u8

Stream.mpd (DASH manifest)

Example master playlist for single bitrate

#EXTM3U

#EXT-X-VERSION:6

Media Playlists

Audio

#EXT-X-MEDIA:TYPE=AUDIO,GROUP-ID="audio/mp4a",LANGUAGE="en",NAME="English",AUTOSELECT=YES,DEFAU
LT=YES,URI="audio-en-mp4a.m3u8"

Video

#EXT-X-STREAM-INF:AUDIO="audio/mp4a",AVERAGE-BANDWIDTH=3454711,BANDWIDTH=4209761,CODECS="avc1.
640020,mp4a.40.2",RESOLUTION=1280x720 video-avc1.m3u8

Other Info

● Bento will only segment at an i-frame
● Creates HLS assets faster than ffmpeg or shaka packager
● Gathers its metadata while segmenting, so codecs, average bandwidth,

bandwidth, and resolution are automatically added to the manifests
● A full set of DASH and metadata options

List of all Bento4 binaries: https://www.bento4.com/

https://www.bento4.com/

Cloud Encoding (The Server)
TIME FOR SYSADMIN

OVERVIEW

● Choose your Cloud:
○ AWS
○ Azure
○ RackSpace
○ IBM SoftLayer

● Or don’t (On-prem)

● Or a hybrid (e.g. - On-prem and S3)

SIZING YOUR SERVER

● General
○ What general bitrates are you dealing with?

● Live
○ How many concurrent live streams?
○ Are you also transcoding optional renditions for ABR?

● VOD
○ How many concurrent videos being processed?
○ Is it transcoding or just transmuxing?
○ Do you need to create sidecar assets?

OUR EXPERIENCE

● In AWS we’ve found m3.large to be a pretty cost effective,
decently performant and reliable instance size

● We made our decision in Azure based on AWS and went
with as similar a match we could find, DS2_V2

● We use Linux as our base since it’s friendlier with our
software stack. Mostly RHEL.

STARTING POINT

● Get started with ec2 instances:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/E
C2_GetStarted.html

● Get started with Azure VMs:
https://azure.microsoft.com/en-us/documentation/articles/vir
tual-machines-linux-quick-create-portal/

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-quick-create-portal/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-quick-create-portal/

GPU PIPELINE

Offload processing from CPU to dedicated hardware

● FFmpeg has some support for GPU Acceleration

● You need to have specific supported hardware
○ Example: AWS EC2 g2.2xlarge + CUDA + FFmpeg with

-hwaccel option specified

HEVC Live – Intel Scalable Processor Family

• x265 Boost from Intel Xeon Scalable
Processor Family

• x265 show a 67% average per-core gain
for encoding using HEVC Main profile

• 50% average gain with Main10 profile
across different presets

http://x265.org/x265-receives-significant-boost-intel-xeon-scalable-processor-family/
http://x265.org/x265-receives-significant-boost-intel-xeon-scalable-processor-family/

GETTING THE SOFTWARE

You’ll need to download and install software

● Our preferred toolset:
○ FFmpeg (Video processing and Static Builds are easy

install)
○ Bento4 (Video packaging and MP4 manipulations)
○ ImageMagick (spritesheets, thumbnails and image

manipulation)
○ Node.js (You need an application server wrapper)
○ MongoDB (You need some data persistence)
○ Cloud Provider SDK (e.g. AWS SDK for JavaScript in

Node.js)

DIRECT LOADING

Getting started with FFmpeg

1. Select your static build: https://ffmpeg.org/download.html
2. Download, extract, and verify:

jheider@manage:~$ wget https://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz

jheider@manage:~$ tar xf ffmpeg-release-64bit-static.tar.xz

jheider@manage:~$ cd ffmpeg-3.1.5-64bit-static/

jheider@manage:~/ffmpeg-3.1.5-64bit-static$./ffmpeg

ffmpeg version 3.1.5-static http://johnvansickle.com/ffmpeg/ Copyright (c) 2000-2016 the FFmpeg
developers
 built with gcc 5.4.1 (Debian 5.4.1-2) 20160904

https://ffmpeg.org/download.html

Cloud Workflow
MAKING IT HAPPEN

DESIGNING A WORKFLOW - API

You need a good workflow architecture

● Similar to AWS Simple Workflow Service for logical and
atomic chunks:
○ Workflow (End to End Execution)
○ Steps (Ingestion, Processing, Transfer)
○ Tasks (Create alternate bitrate rendition, Thumbnails)
○ Adapters (We added this to be agnostic.

E.g. AWS S3 vs. Azure Blob vs. On-prem)

WORKFLOW: FILE TRANSFER

Try to leverage any performance enhancements available

● Day to Day Ingestion
○ AWS Multipart Upload
○ Azure Streaming Put a BlockBlob

● Initial Content Migration
○ AWS Import/Export Snowball
○ Azure Import/Export Service

WORKFLOW: QUEUE

Gracefully handle all your users

● Processing takes time. You need to line up requests.

● Queuing w/persistence also lets you keep track of job
status and what’s pending in case of restart.

SAMPLE CODE

Check out the demo:
https://github.com/realeyes-media/demo-encoder

● Here’s a snippet

input.inputOptions = options.inputOptions;
output.outputOptions = ["-hls_time 8", "-hls_list_size 0", "-bsf:v
h264_mp4toannexb", "-threads 0"];
input.inputURI = path.join(__dirname, '../../' + options.inputURI);
output.outputURI = directory + '/' + options.fileName + options.timestamp + '_' +
bitrate + '.' + options.outputType;
options.outputURI = output.outputURI;
output.outputOptions.push('-b:v ' + bitrate + 'k', '-r ' + options.fps);

// Use options to call ffmpeg executions in parallel
executeFfmpeg(input, output)

https://github.com/realeyes-media/demo-encoder

Scaling
TIME TO GROW

SCALING & CONCURRENCY

How high can we go?

● FFmpeg will not error when the CPU is busy, just takes
longer to process.

● First - Determine the Scenario:
○ The volume of files you need to simultaneously process
○ The average size of the files you need to process
○ The processing time that’s acceptable for you org
○ The kinds of operations that need to occur (e.g. Just

transmux? Transcode to 4 renditions?)
● Second - Run Performance Tests

SCALING - MULTIPLE INSTANCES

Bigger instance or more instances?

● Bigger Instance
○ PRO: Handles more concurrency
○ CONS: Can be more costly

● More Instances
○ PRO: Cheaper - Can be scaled up and down to only pay

when needed
○ CONS: More complicated to manage

MULTI INSTANCE BALANCING

Scale Horizontally Transparently

● Clients hit a load balancer
● You can add more instances as needs grow in a

transparent and simple way
● If your architecture is sound there’s no need for session

stickiness between the clients and the transcoding system
● AWS Elastic Load Balancer: https://aws.amazon.com/elasticloadbalancing/

● Azure Load Balancing:
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-load-balance/

https://aws.amazon.com/elasticloadbalancing/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-load-balance/

AUTO-SCALING

Leverage Auto Scaling Features

● Automate the spin up/down of instances based on a
number of criteria:
○ Instance Load
○ Periodic Need for Faster Processing
○ Time of Day
○ Specific Events

● AWS Auto Scaling: https://aws.amazon.com/autoscaling

● Azure Auto Scale:
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-scale-portal/

https://aws.amazon.com/autoscaling
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-scale-portal/

CONTAINER SWARMS

Docker is all the rage. Swarms and Service Discovery

● Create a swarm of Docker containers for a highly
repeatable processing server snapshot that utilizes system
resources efficiently

● Further increase automation through service discovery

● Implement “auto scaling” on steroids

● AWS Elastic Container Service

Encoding and Review Demos

● Demo Encoder Demo

● Manifest Viewer Demo

Conclusion
THINGS TO TAKE AWAY

THANK YOU!

● Jan Ozer
○ Principal - Doceo Publishing
○ jozer@mindspring.com
○ @janozer

● Phil Moss
○ Senior Developer - RealEyes Media
○ phil@realeyes.com
○ http://bit.ly/realeyes2018 [Presentation Resources]

mailto:jozer@mindspring.com
mailto:phil@realeyes.com
http://bit.ly/realeyes2018

