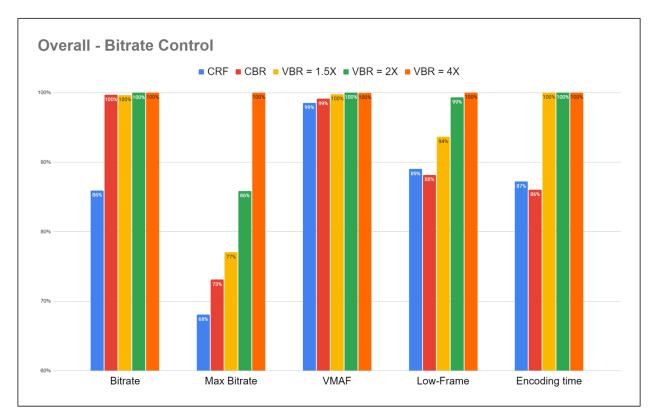
# x.264 Optimization Checklist

Practical tuning guidance for VOD and live H.264 encoding using x264 or commercial variants

# **Per-Title Encoding**

- If you're not using per-title or content-adaptive encoding, start here
- Significant savings at no quality cost
- Works across ladders, improves all rungs


#### **GOP Structure**

| Overall - H.264   | .5 sec | 1 sec | 2 sec | 3 sec | 4 sec | 5 sec | 10 sec | 20 sec |
|-------------------|--------|-------|-------|-------|-------|-------|--------|--------|
| All Animation     | 90.25  | 92.75 | 93.90 | 94.33 | 94.48 | 94.59 | 94.81  | 94.90  |
| All Entertainment | 90.67  | 92.16 | 92.92 | 93.14 | 93.26 | 93.35 | 93.50  | 93.53  |
| All Sports        | 91.11  | 93.94 | 95.23 | 95.56 | 95.78 | 95.88 | 96.05  | 96.11  |
| All Office        | 82.61  | 91.21 | 94.21 | 94.85 | 95.07 | 95.26 | 95.43  | 95.53  |
| Overall           | 88.73  | 92.42 | 93.92 | 94.32 | 94.49 | 94.61 | 94.79  | 94.86  |
| Delta from Max    | 6.13   | 2.43  | 0.94  | 0.54  | 0.37  | 0.25  | 0.07   | 0.00   |

#### Table 1: Quality improves with longer GOPs, though it's diminishing returns after 5 seconds.

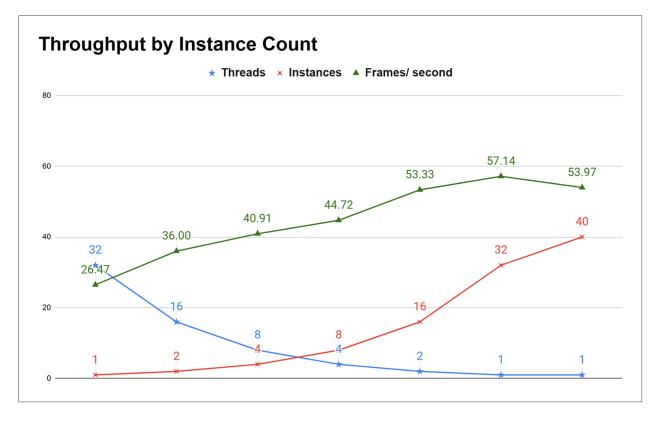
- Use longer GOPs: 5–10 seconds, depending on segment duration.
- Enable scene-change I-frame alignment (variable GOP) if supported
- Ensure compatibility with packager and players

# **Rate Control**



# Figure 1: While 2-pass VBR yields only a ~14% increase in encoding time, the chart exaggerates that impact due to a compressed Y-axis (60–100%). Quality gains—especially in low-frame performance—are far more substantial.

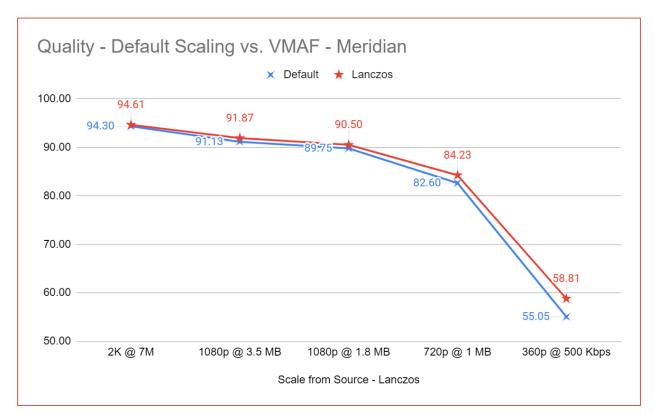
- For VOD: Use 2-pass VBR with a 200% constraint;
- For constrained workflows: Use capped CRF (e.g., CRF 23–27 with VBV maxrate)
- Use CBR only where required (live or tightly managed bandwidth)


#### Presets

| Preset    | Bitrate | Encoding<br>time |
|-----------|---------|------------------|
| Ultrafast | 196%    | 6%               |
| Superfast | 171%    | 11%              |
| Veryfast  | 151%    | 16%              |
| faster    | 123%    | 19%              |
| fast      | 122%    | 26%              |
| Medium    | 112%    | 31%              |
| Slow      | 108%    | 43%              |
| Slower    | 106%    | 56%              |
| Veryslow  | 100%    | 100%             |
| Placebo   | 100%    | 408%             |

Table 2: Presets trade encoding time for bitrate. Be sure to factor both into the preset selection decision.

- Low volume? Use medium or slow to reduce encoding time
- High volume? Use veryslow or placebo for bandwidth ROI
- Remember: bitrate controls quality, not preset

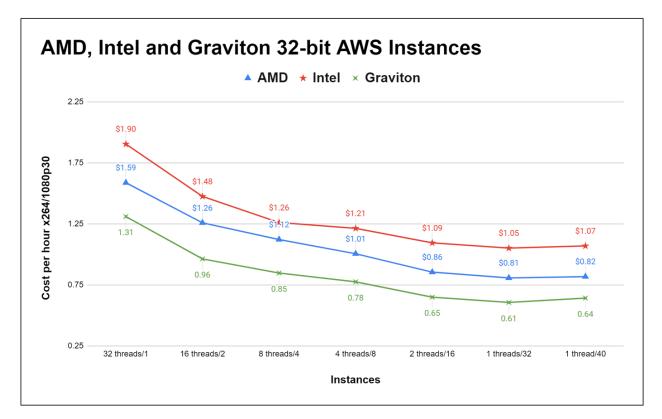

# Threading



# Figure 2. Single thread delivers highest quality (see handout) and highest throughput when encoding with multiple instances.

- Prefer 1 thread per job with parallel processing for quality
- For testing or prototyping: 8 threads offers good balance
- Avoid overloading threads beyond core count

## **Scaling and Filters**




#### Figure 3. Lanczos delivers better quality in the lower rungs at no cost.

- Replace bilinear with Lanczos for downscaling:
  -vf scale=640x360 -sws\_flags lanczos
- Especially useful for bottom rungs, improves VMAF up to 3–4 points

### **QA and Metrics**

- Target VMAF: 93–95 for premium, 85–92 for general
- Track lowest frame score, harmonic mean, and standard deviation
- Use frame-level inspection to validate score spikes



#### Figure 4. With x264 and FFmpeg, Graviton delivered the lowest cost per hour of encoding.

- Graviton: best \$/hour for x264
- AMD: best throughput per instance
- Tune core/thread ratio to avoid quality drops or job failures

#### **Ready to Optimize Your Encoding Workflow?**

I consult to help teams improve their H.264 and HEVC encoding configurations. This can range from a quick review of existing settings to a more in-depth, testing-based optimization.

Not sure what kind of help you need? Start with a free 30-minute discovery call to review your current approach and identify the most valuable areas to tune.

Send a note to jan.ozer@streaminglearningcenter.com to get started.